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It is shown that fully conjugated alternant nonclassical polymers are compara- 
tively stable systems as a result of the considerable delocalisation energy. 

The energy characteristics of the polymers are strongly determined by the 
electron spin distribution of the degenerate nonbonding molecular orbitals; 
the full spin configuration, S > O, is favoured. The spin densities depend on 
the electron correlation and alternate; this corresponds to a ferrimagnetic 
state of the polymer at O~ 
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1. Introduction 

According to Dewar [1], nonclassical hydrocarbons are those, to which no 
classical structure (Kekul6 structure) can be associated. Thus, radicals and poly- 
radicals are nonclassical hydrocarbons. Usually they are less stable than hydrocar- 
bons with closed shell electronic structure, but their stability varies in a wide 
range [2, 31. An estimation of the significance of the conjugation for the stability 
of radicals one may gain from a comparison of the properties of Ziegler's radical, 
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tetra-phenyl-allylradical [4] with those of Koelsch's radical, a,3,-bisphenylene-/~- 
phenyl-allylradical [5]: e.g. the first one exhibits the usual sensitivity of radicals 
against oxygen, while the second one does not undergo a reaction if kept under 
air. Assuming that the delocalization of ~--electrons may be responsible for the 
stability, one could expect that nonclassical, but fully conjugated, polymers might 
be stable at room temperature or below. Such a behaviour would be very 
interesting; moreover, systems of this type, perhaps, exhibit some unusual mag- 
netic and electric properties. So, it seems to be worthwhile to investigate some 
systems of this kind. 

An alternant hydrocarbon with r starred and s non-starred carbon atoms is a 
nonclassical system; according to the theorem of Coulson and Rushbrooke [6] 
it has at least I r -  sl degenerate non-bonding molecular orbitals (NBMO). As an 
example may serve the benzylradical, where r - s = 4 - 3 = 1. 

* ~ o  ~ r = ]{*}1 = 4 

0 s = I{*tl = 3 

Taking this molecule as a monomer unit and linking the exocyclic carbon to the 
meso-position of the following unit, polymer I is constructed. It has 4N starred 
and 3N non-starred carbon atoms, where N denotes the number of the elemen- 
tary units; hence, it has N NBMOs too. 

o /4. 

- - c  : * H 7 : 
tt 

A very similar polymer, II, has been investigated by Mataga [7]. There again a 
great number of NBMOs has to be considered. It is assumed that they arise 
from those AOs which are not involved in bonds; according to the structure of 
H half of these AOs are o--AOs, the other half are ~-AOs. Occupying the 
NBMOs with electrons of one and the same spin, a ferromagnetic state results [7]. 

H 

Since the polymers I and H are ~--isoelectronic, a ferromagnetic state should 
be expected also for polymer L But, as pointed out by Buchachenko [8], in 
high-polymeric conjugated systems ferrimagnetic states cannot be excluded. 



Nonclassical Polymers 293 

There are no investigations on the band structure of nonclassical polymers except 
a work [9], where the simplest model of an alternant nonclassical polymer, III, 
has been treated. 

3 * * 

III 
_ _ _  / ~ " x . . ~ / / ~ . . . ~ ~  

I * * 

The spin density distribution of this model polymer has been investigated by 
Ovchinnikov and Cheranovsky [10]. 

2. Band-Structure in One-Electron Approximation 

For the polymer I I I  which consists of N elementary units, the Bloch functions 
satisfying the Born-Karman conditions are expressed by 

1 N-1  3 i~t~ 
Ik) = ~ ,=0E Y.r ark e Ir, ix) (1) 

where Ir, ~) denotes the orthogonalized AO on center r in the elementary unit 
tz. By means of the methods described in [11], the characteristic polynomial is 
obtained as follows: 

x (x 2 - 3 + 2 cos ~ok) = 0, 

x = (ol - e ) / f l ,  

where a = 0 marks the origin of the energy scale. Its roots determine the MO 
energies: 

ek = +/3x/3 +2 cos tok 

2 ~ k  (2) 
w k =  N 

k = l , 2  . . . . .  N. 

Beside the N bonding MOs (BMO) and the N antibonding MOs (ABMO), given 
by Eq. (2), there are N degenerate NBMOs with energy 

el = 0  ( l=  1, 2 , . . . , N ) .  

The NBMOs do not contribute to the delocalisation energy per electron; hence, 
it amounts to 

N ~  f0 ~r g = E / 3 N = 2 / 3 N F ~ e k  ~ 2fl/31r ~/3+2 cos ~o &o = 3.514 ft. 
k 71" 

In the case of polyenes without bond alternation [12], the delocalization energy 
per electron is equal to 

g = 4 f l l ~ - .  
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F r o m  the  secular  equa t ions  and  Eq.  (2) a re  o b t a i n e d  the  coefficients of the  M O s :  

(a)  B M O s :  

2 1 + cos ~Ok 
a l  k - 

3 + 2 cos tok 

a 2 = 1  
2k (3) 

a2 k 1 1 ~ _ _ o  

2 3 + 2  cos ~Ok 

(b) N B M O s :  

blk = x/2 a3k 

b 2 k  = 0 

b 3 k  = - 4 2 a l k  
(3a) 

( l - k  = 1 , 2  . . . . .  N ) .  

Us ing  the  s ame  m e t h o d  [11] as a b o v e  we ob ta in  for  p o l y m e r  I the  fo l lowing 
charac te r i s t i c  po lynomia l :  

X(X 2-  1)(X 4 -  7X2+ 1 0 - - 2  COS Ok) = 0. 

P o l y m e r  I has th ree  infini tely n a r r o w  bands  at  ek =/3, 0, and  - /3,  respect ive ly .  
Bes ide  that ,  two b o n d i n g  and  two a n t i b o n d i n g  bands  a p p e a r  which have  the  

energy:  

ek = +f l  47 + �89 + 8 COS Ok 

ek = +047-�89 + 8 cos oJk (4) 

(k = 1, 2 . . . . .  N ) .  

T h e y  range  f rom 2.358fl  to 2B and  f rom 1 .7320  to 1 .1990.  

F o r  the  coefficients of the  N B M O s  we ob ta in :  

2 2 
Clk  

5 -- cos t.ok 

c2 k = (_csk)  2 = 1 - cos tok (5) 
5 -- cos tok 

2 1 + cos tOk 
C7k -- 

5 -- cos tOk " 
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From Eqs. (4) the delocalization energy per electron is obtained as follows: 

f g = 2/3/7 { 1+ 1/,,/21r ~/7 + ~/9 + 8 cos ~o do) 

f 1 + 1/~/2~r ~/7-  ~/9 + 8 cos oJ'&o 

4.172/3 

So, energetically polymer I is slightly more stabilized than the polyene, where 
g = 4/3/0r. 

Both polymers I and 1I, have a considerable energy gap of exactly -/3, deter- 
mined by the molecular topology (A,op) [15, 16] 

AEoo (I) = AEoo (III)  = -/3 = A,ov. (6) 

3. Alternant Molecular Orbital Method 

The DODS-method (Different Orbitals for Different Spins) is very suitable for 
systems with unfilled shells [13]. Such systems are the treated nonclassical 
polymers. In the present study, as in the case of one-dimensional polymers with 
closed shell [14-16], the Alternant Molecular Orbital (AMO) [17, 18], a variant 
of UHF method [19], is used. The formalism developed for the simplest model, 
III,  of a nonclassical polymer can be directly generalised and applied to any 
other alternant nonclassical system. 

L~t us denote by ~0k~, 1 - < k - N ,  o-~ a,/3, the spin orbital k belonging to the 
bonding band of I I I  and by X the spin orbital of the NBMOs of I I I ;  due to 
DODS, the space factor of q~k~ and q~kt~ being different. Assuming an electron 
configuration as shown in Fig. 1, i.e. the bonding band is fully occupied and 
there are p NBMOs occupied by electrons with spin a and q = N - p  NBMOs 
occupied by electrons of spin/3, the wave function of I I I  is represented by 

1 
- - d e t  I[q~1~r �9 �9 �9 eN~ple~p2e �9 �9 "q~Ne 

4(3N)! 

" ) ( l a X 2 a  " " " , ~ p a X ( p + l ) / 3  " " " X N / 3 I [ -  ( 7 )  

+ + 4  + ......... + 
p(a ) q(~) 

-I1  
(q=N-p) 

Fig. 1. Scheme of spin distribution on the 
occupied MOs of polymer II1 N((I) N(~) 
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If the BMOs are denoted by [k}, and the ABMOs by 1/7), according to the AMO 
method [14, 17, 18], the orbitals for different spins receive the form: 

]k~) = sin 0k~, ]k} +cos 0k,~ 1/~} 

[k~} = sin Ok~ Ik)-cos 0~o l/g) 
(k = 1, 2 . . . . .  N). 

(8) 

The AMOs are closely related [20] to the Spin Density Waves (SDW) [21]. 

Taking into account the Bloch representation [1] of the MOs and Eq. (8) for 
the AMOs, in the case of the electron distribution given in Fig. 1 one obtains 
for the atomic electron densities the following expressions: 

o t  

qr  = 
N 2 P 

E (ark sin 0k~ + ark COS 0ka) + 2 br~ 
k l 

N N 
2 2 ark + E {(d2rk __ 2 = ark) COS 2 0k,~ + arkdrk sin 20k,~} 

k k 

p N N 

+ 2 br~ +1 Y~ br~-~ 2 b 2 rl 
/ = 1  p + l  p + l  

:�89 +87, (9) 

where ark, &k, and brk denote the LCAO coefficients of BMOs, ABMOs, and 
NBMOs, respectively, 

a - 2  2 8r = ~ {(ark -- ark) cos 2 0k~ + arkark sin 20k~}; 
k 

d7 �89 2 1  2 = b~-~  ~ brl; 
l=l  / = p + l  

N 

q r =  2 Z ar~ + ~ br2l; 
k / = 1  

q~=�89 +8~; 
ot 

df  = -dr .  

If ( r - s ) >  1, there are N ( r - s )  NBMOs and the summation limits for l in Eq. 
(9) have to be changed appropriately. In the following we assume r - s  = 1. 

The above Eqs. (9) are valid for arbitrary systems: for non-alternant systems, 
as well as for systems with heteroatoms. 

If the system is homonuclear and altenant, 

, :# 
ark = ark ,  ask = - -ask ,  
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and: 

~ a  1 a 2 
qr = ~ + dr + ~ ark sin 2G~ 

k 

=�89 +87 

0 
qs =�89 -8~' (10) 

"13 1 a -t- a ~ .  q~ = ~ - d r  

Within the framework of the SDW approximation [14, 20]: 

a~ =-aT;  8~ = - a L  

Similar expressions may be obtained for the bond orders; here they are not 
presented, since they will not be needed in the framework of the Hubbard's 
approximation [22], which will be applied now. 

The AMOs, ]k=}, used for the construction of the wave function like Eq. (7) are 
obtained from 

-f'~l~,,-) = Ek~ik~),  

where /~<~--x~+)~ denotes the UHF operator. The BMOs and the ABMOs 
are obtained from the operator in the conventional HF method,/~ according to 

f'lk)=e~lk) 
~1/7) = ~ I/7). 

In the framework of the Hubbard's approximation [22], the nonvanishing ele- 
ments of the matrix representation of P~ have the following forms [14]: 

Fr ~ = F,, + %d~ + %Bar 

Fr% = fl (r and s are neighbours), (11) 

where y denotes the one-center Coulomb integrals. 

From the secular equations the AMO energies are given by (see [14]) 

~,., = {�88 - e,~ + ( s  Is - <k IP" Ik))~ 

+ (k-lP:l~T)"}l/~ 
(12) 

O" E O G ~ ,  
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and one also obtains 

sin 2Ok,~ = (klf~l/?> 
E kot 

(klf~11?) (13) 
sin 20kt3 

~k/3 

From Eq. (11) we obtain the matrix elements figuring in Eqs. (12-13): 

(/If~l/~)=y ~ark(dr  + &  )-- askTs 
r 

<k Ifgk> = <l?lf~ I~?> (14) 

2 ~ 2 6" 
= y  a,k(dr +6~)+ ask6s �9 

In the above expressions the index r marks the starred AOs and s the non-starred 
AOs. 

Applied to polymer III, Eqs. (14) have the form: 

(k lPI f ) - -  2 "y{alk(dl +67)--a~k6~ + 2 a a3k(d3 +8~)} 

(k l~lk> = (~?lfg~?> (15) 

= y{(d~ +O1)81k -~azk02 +a3k(d3 +83)}. 

Admitting the conditions: 

2 2 
Ea~k+Eask =1 
r $ 

(16) 
E a , - E  ~ = o  

r $ 

it appears that: 

( k i r t l e )  = a..(, ,~ ) 

a 1 (dl - 83 ) + a3k (d3  --  8~)}.  (15a) 

In the limit of N + 0% in the case of polymer III, for the correlation corrections 
8 are obtained the fol lowing equations: 

6~ =--2-~ Jo a~(~~ e-7~) a~~ 
(17) 

e~ (w) = [(3 + 2 cos ~o)2/3 z + A ](oJ)] 1/2. 

In general, for any alternant nonclassical system, constructed, from elementary 
units each containing m AOs, one obtains ( m -  1) linearly independent 87's 
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which satisfy the equations: 

1 I )  ~" 2 A~(~o) 
8~ -v ai (w) e-7~w) aw 

i = 1 , 2  . . . . .  ( m - l ) ,  
(18) 

where e~ (co) and A,~ (~o) are determined by Eqs. (12) and (14), respectively. 

Due to the SDW formalism 

a, ~ = -a0/. 

In Eqs. (18) one has to integrate over all the bands of the BMOs. 

This work could be considerably simplified if one approximates the correlation 
corrections as follows: 

0 
a; ~ = - a ~  =a. 

(19) 

, 0 
Obviously, 8 (8) is at best understood as the mean values of the S,'s (6~'s) and, 
hence, one obtains: 

�9 , = - - 1  ~ f ]  ~' 6= l / r  Y~& 2err aZ(~176 
r r 

1 IO 2rr 
4~rr sin 20(o~) &o 

(2o) 
o 

8 = 1/s s 8s = ~ s  o a ,  (~o) sin 20(~o) do) 

- 1  Io 2'~ = 4~rs sin 20 (w) dw, 

where r and s denote the number of starred and nonstarred atoms in the 
elementary unit, respectively. 

From Eq. (20) it follows immediately that 

0 

a = (r/s)a. 

Thus, Eqs. (18) are reduced to the equation: 

, r2~ 1 r 2~a~(o~) 
6=�88 :o | sin 20(~o)dw =a~rr Jo dw (21) 



3 0 0  N .  T y u t y u l k o v  e t  a l .  

where (see Eq. (14)): 

o } 
2 2 2 ~x A(O)k) = 3' a r (o)k)+ 8 3~ a ,  (o)k)+ Y. a r (~ok)dr 

s r 

{ 1 . ~  ~ = 3' g(8 + 8) + }  a r (,ok)dr 

r + s  * 
- a r (ok)dr. ~_{_~_.., 2 a 

Z ,S  r 

For the mean energy of an electron, i.e. the energy per electron, the following 
expression is obtained: 

e =  l /mN{Cbl~ l~( i )+  Y~ e2 , ~  
�9 i < 1  r i j  I 

= 1 / 2 m N  E Y~ (k(l),d~+P"lk(l),~) 
tr k ( l )  

= 1 / 2 m N  Y~ Y~ (k(/)~[2ff ~ - / ~ ] k ( / ) ~ )  
cr k ( l )  

= - 1 / 2 m N  ~ ~ [ek~[--Ee~ = e~ +e~ --Eel. (22) 
~r k 

In the above equation Eel stands for the electron interaction energy per electron, 
which is given by: 

: 3 ` / 4 - 7 / m { ~  (8: + 2d~') 2 +~ (8•) a} (23) 

where the operator of the electron interaction is denoted by/~ = ff'~ -/~. 

4. Energy Characteristics of the Polymers 

The energy of the system depends strongly on the multiplicity of the system, i.e. 
on the S:-projection of the total spin upon the z-axis; Sz=�89 (see 
Fig. 1). Since the BMOs are occupied by equal number of electrons with spin 
a and spin fl, the total projection Sz is determined by the spin population of 
the NBMOs,  hence, one obtains (see Fig. 1): 

Sz = �89 - q  (/3)1-- �89 - N I -  N/212p/N - 1[. 

Table 1 illustrates the dependence of the ground state energy of polymer [H on 
the parameter p/N.  Minimal values of the ground state energy are achieved for 
p / N  = 0 or 1. The same results are obtained for polymer L 

Both results convey Hund's  rule for maximum multiplicity, essentially used in 
Mataga's work [73, and also concur with the results of Ovchinnikov [23], where 
it is qualitatively shown that S > 0. 
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Table 1. Values of dr, the correlation correction 6r and the ground state energy (of polymer III) 
estimated by means of Eq. (22) depending on piN. The results are obtained for/3 = -2.4 eV and 
3' = 5.4 eV; the same parameters are used in the band structure-investigations of polyenes and 
alternant hydrocarbons with closed shell [15-16] 

p/X d~ d~ 8~ 8~ -e,,  (eV) ~ -e (eV) 

0 -0.224 -0.276 -0.079 -0.081 4.25'2 2.752 
0.1 -0.203 -0.197 -0.068 -0.072 4.186 2.271 
0.2 -0.179 -0.121 -0.054 -0.056 4.121 1.885 
0.3 -0.145 -0.055 -0.038 -0.036 4.069 1.605 
0.4 -0.089 -0.011 -0.020 -0.017 4.036 1.416 
0.5 0.0 0.0 0.0 0.0 4.026 1.342 
0.6 0.089 0.011 0.020 0.017 4.036 1.416 

1.0 0.224 0.276 0.079 0.081 4.252 2.752 

a (3r COL, /3 

T h e  o rb i t a l  e n e r g i e s  of b o t h  p o l y m e r s  I a n d  III  do n o t  d e p e n d  e s sen t i a l ly  o n  

the  c o r r e l a t i o n  co r r ec t i o n s  wh ich  a re  c o m p a r a t i v e l y  smal l ;  this  fact  is i l l u s t r a t ed  

in  Fig.  2. W h e n  p / N  = 1 /2 ,  t h e n  6r = 0, h e n c e ,  e , ( tok)  = e(tOk). 

I n  the  case of p o l y m e r  III ,  at  p i N  = 0, t h e  e n e r g y  gap  a m o u n t s  to (see Eq .  (6)): 

AE~o = x/~82 + A2(Tr) = x/AtLp + AcLrr = 2 .78  eV,  

w h e r e / 3  = - 2 . 4  eV,  y = 5 .4  e V  [ 1 5 - 1 6 ] .  

F o r  p o l y m e r  I t h e  c o n t r i b u t i o n  of t h e  c o r r e l a t i o n  co r r ec t i ons  to  the  d e g e n e r a t e  

B M O s  (ek = / 3 )  is neg l ig ib ly  sma l l  for  p / N  = 0: 

E,~ ('tr) = +4/32  + 0.05923/2 = +/3. 

- 2 .  

--~o 

--6~ 

--8~ 

-qO. 

Ed(eV) 

0 ~/2  ~ 
,[ 

Fig. 2. Energy of the BMO e~(cr ~ a,/3) of polymer III upon to at: (1) p/N=O; (2) p/N = 0.5; 
/3 = -2.4 eV; 3' = 5.4 eV 
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5. Electron Interaction Energy in the NBMO Band 

The mean interaction energy of the electrons in the NBMOs with themselves is 
given by the formula (in the case of polymer III): 

2 

Ee1(NBMO) = 1 /N(de t  (NBMO) Y~ e d e t  (NBMO)) 
i<i rij 

= 3'ql(P)[ql - ql(P)] + Yq3(P)[q3 - q3(P)] 

= 3,qx(p)[0.388 - q~(p)]  + vq3(p) [0 .612  - q3(p)]  

1 2 Y[a(ql +q23)- 2 2 = dl  - d 3 ] ,  (24) 

which may be generalized for an arbitrary alternant nonclassical system: 

* *  * * * * 2  * *  
E,~(NBMO) = X qr(P )[ qr -- qr(P)] = 3'/4 • qr -- 3' ~. d~ . (25) 

r r r 

In the above expressions, correct in the Hubbard's approximation, the following 
denotations are used: 

p N 

ba = d , + 5 ~ b a  =&+�89 q~(p)= ~ z 1 2 
/=1 1 

det (NBMO)= 1 / 4 - ~ . l x 1 ~ x 2 , ~  . .  " x p , ~ x ~ p + , ~  " " x N ~  I. 

Expression (24) has its maximum, i.e. the electron interaction is strongest, at 
p / N  = �89 (this means S~ = 0), and vanishes at p / N  = 0 or 1. 

6. Spin Densities 

The electron correlation taken into account influences the spin density distri- 
bution 

p~ =qr  -q~ �9 

From Eqs. (9)-(10) we obtain: 

Pr : d~  x ..1_ ~ x  _ d r ~  _ ~  : 2d~X ..{_ 2 ~ x  ( 2 6 )  

Table 2 shows the dependence of the spin densities at different values of p/N.  
For p / N  = 1 (all the electrons in the NBMOs have spin a)  one obtains 

p~ +p3 = 1 + 2(8~' + ~ ' )  (27) 

a~ = - 2 ( a ~  + a ~ ) .  

The above equations, generalised for an arbitrary alternant nonclassical system 
in the ground state, when p / N  = 1, take the form ( r - s  = 1): 

p =  p , = l + 2 X 8 7  
r r ( 2 8 )  

0 ~ 0  0 0 
p =  p, = - - 2 E  8~. 

s $ 
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Table 2. Dependency of the spin densities Or 
of polymer Ill (see Eqs. (27), (28) and Table 
1) on the parameter p/N./3 = -2.4 eV; 3' = 
5.4 eV 

p/N 01 P2 P3 

0.0 -0.606 0.320 -0.714 
0.1 -0.542 0.280 -0.538 
0.2 -0.466 0.216 -0.354 
0.3 -0.366 0.148 -0.182 
0.4 -0.218 0.074 -0.056 
0.5 0.0 0.0 0.0 
0.6 0.218 -0.074 0.056 

1.0 0.606 -0.320 0.714 

In the Har t ree-Fock approximation 6~' = 62 = 0 for all nonclassical systems, the 
spin densities at the nonstarred atoms being zero: 

0 

p (HF) = O. (29) 

7. Conclusion 

As illustrated by Table 2, the spin densities alternate upon the centres of an 
elementary unit. The same result is obtained for polymer I I I  by Ovchinnikov 
[10], too. In the case of polymer ! the alternation of the spin density is shown 
in Fig. 3. 

All these results suggest to consider a nonclassical alternant polymer as divided 
into sub-lattices, one for the starred and the other for the nonstarred atoms (Fig. 
4). Each of these sub-lattices are populated with electrons of parallel spins, but 
opposite between the sub-lattices. Thus, it results that Sz > 0 for the polymer. 

Consequently, the one-dimensional nonclassical polymers investigated have a 
ferrimagnetic ground state. 

-0.Ia6 I I -0.Iz~6 

**~[-0,SaO 
-0.168 

0,118 

-0,26ll- l 1-0,26# 

~[-0,658 
0,118 [ 0,118 

-0,286 
(a) (b) 

Fig. 3a, b. Distribution of the spin density in the elementary unit of polymer I at p/N = 0. a In HF 
approximation; b in AMO approximation 
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0 0 0 

o 0 0 0 0 0 0 

; I   ,,.,.  es ,nsub-,att,ceso po,ymer, 
This result is valid at T = 0~ The magnetic properties of the treated systems 
will depend on the temperature behaviour of the spin population. A statistical 
treatment of this problem is under investigation. 

The numerical data collected in Table 1 and 2 may change slightly in case of 
spin projection of the wave functions, but no essential qualitative change has to 
be expected. 

Thus, the results obtained may be generalized, probably, to the conclusion that 
fully conjugated alternant nonclassical polymers (i.e. polyradicals) gain enough 
energy from the delocalisation of the ~--electrons to exhibit energetic stability. 
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